赌博网站-参与网上赌博严重吗

學術科研

劉磊教授在幾何分析領域取得新進展

日期:2022-09-05 作者:朱瀟瀟 點擊量:

華大在線訊通訊員 朱瀟瀟近日,我校數學與統計學學院劉磊教授與上海交通大學朱苗苗教授合作的論文Asymptotic analysis for Sacks-Uhlenbeck $\alpha$-harmonic maps from degenerating Riemann surfaces被Memoirs of the American Mathematical Society接收發表。Memoirs of the American Mathematical Society為美國數學學會主辦的知名學術期刊,專門發表在數學領域的高質量原創性長篇論著。

調和映射是幾何分析領域中的一個重要研究對象,其在極小曲面的相關問題中有著重要的應用。劉磊教授的合作論文研究了從退化黎曼面出發的Sacks-Uhlenbeck $\alpha$-調和映射序列的緊性問題。通過分析三種不同的neck區域、引入新的Pohozaev型常數、探討退化區域上爆破點的位置參數信息,該論文建立了一般型的能量恒等式。在此基礎上,該論文還證明得出“neck區域的極限是目標流形上的測地曲線”,并且給出了測地曲線的長度計算公式。

圖1.neck分布示意圖

圖2.neck極限分布示意圖

該成果系統地研究了退化黎曼面上Sacks-Uhlenbeck $\alpha$-調和映射序列的漸近行為,解決了由John Douglas Moore教授在其研究專著Introduction to global analysis. Minimal surfaces in Riemannian manifolds.Graduate Studies in Mathematics, 187.American Mathematical Society, Providence, RI,2017. xiv+368 pp. ISBN: 978-1-4704-2950-8中提出的如下公開問題:對于極小化序列,曲面的共形結構可能會到達模空間的邊界,意味著曲面會退化成低虧格曲面或者曲面會分解成兩個或多個分支。

上述研究得到了國家自然科學基金以及華中師范大學科研啟動經費的支持。

(審讀人:郭玉勁)

合阳县| 大发888官方下载 银行| 百家乐官网国际娱乐网| 百家乐散台| 达尔| 百家乐太阳城球讯网| 速博| 百家乐投注软件有用吗| 迪威百家乐娱乐| 百家乐官网体育直播| 乐宝百家乐游戏| 婺源县| 百家乐博娱乐平台| 百家乐官网八卦九| 赚钱的棋牌游戏| 百家乐五局八星| 百家乐官网微心打法| 百家乐百家乐技巧| 菲彩百家乐官网的玩法技巧和规则 | 高邮市| 百家乐平游戏| E世博百家乐官网的玩法技巧和规则 | 真人百家乐官网是骗局| 百家乐几点不用补| 先锋百家乐官网的玩法技巧和规则 | 在线体育投注| 百家乐电子路单破解| 百家乐官网游戏平台排名| 宝马会娱乐城返水| 百家乐赚水方法| 长江百家乐官网的玩法技巧和规则 | 逍遥坊百家乐的玩法技巧和规则| 百家乐官网游戏机路法| 明升备用地址| 二八杠怎么赢钱| 百家乐赌博走势图| 百家乐官网平注资讯| 百家乐官网庄闲出现几率| 体育博彩概论| 运城百家乐蓝盾| 玩百家乐澳门皇宫娱乐城|